

FAIRCHILD AIRCRAFT LIMITED

LONGUEUIL, QUE.

COMMERCE

LIBRARY

MCGILL UNIVERSITY

HISTORY AND BACKGROUND OF FAIRCHILD AIRCRAFT LIMITED

Fairchild Aircraft Limited was incorporated in May 1929, for the primary purpose of manufacturing and servicing Fairchild airplanes in Canada. The Company also held the agency for Fairchild cameras.

A factory site was purchased on the south shore of the St. Lawrence River, opposite Montreal, and a building of approximately 40,000 square feet in area was erected. A test field was also built and along the river front a ramp was constructed to provide facilities for beaching seaplanes. A small island offshore gave ideal protection for mooring, hence the site chosen was ideal for this purpose.

The first airplanes manufactured were the Fairchild Cabin Monoplanes, type 71B. In 1930-31 modifications to make these airplanes more suitable for Canadian flying conditions were introduced and the type was changed to 71C. A number of these airplanes were delivered to the R.C.A.F. and to the majority of the principal airplane operators in Canada.

In 1935 the Fairchild type 82 was developed. This was an adaption of 71, the standard 71 wings being used. The principal new features included dual control and a considerably greater cabin space. Accommodation for 11 passengers was provided, the seats being spaced lengthways along the sides of the cabin and were of such a type that they could be very easily removed when it was desired to carry freight. The doors were also enlarged to provide for the entry of bulky machinery, etc. This airplane was designed specifically for operation in the bush country. In 1935, a Super 71 was also developed. This aircraft utilized the standard 71 wings but had an all-metal monocoque fuselage. This type was later adopted for photographic work for the R.C.A.F.

The Fairchild 82's were sold to every operator in Canada and sales were also made to the Argentine Army and Navy, and to other South American Countries. This plane is still regarded by many Canadian operators as the most satisfactory aircraft ever produced for general all-purpose freighting and passenger carrying in bush country.

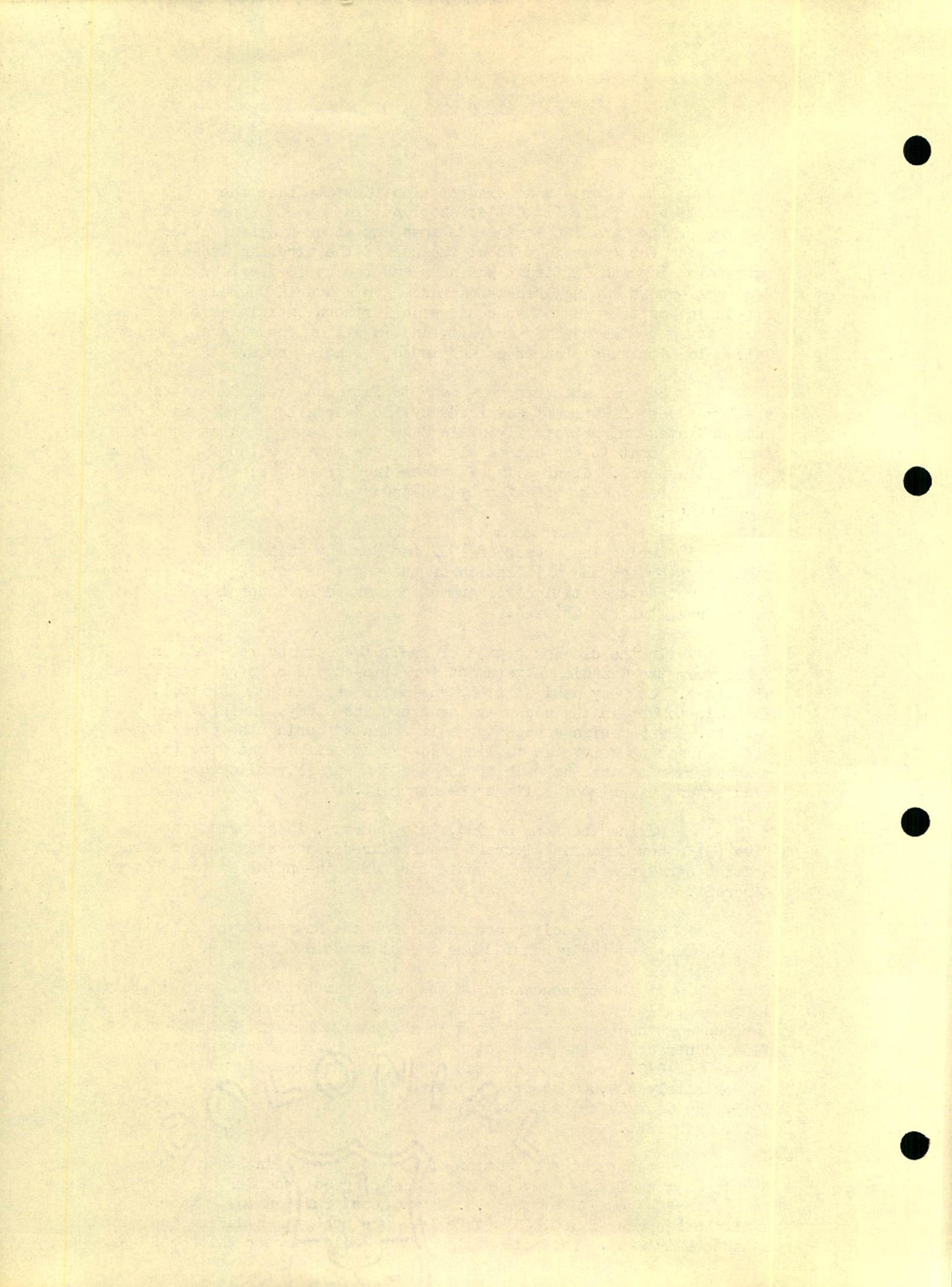
All these aircraft were, of course, convertible from skis to floats to wheels. It is interesting to note that in many cases wheel undercarriage equipment was not supplied with the aircraft as operations were strictly confined to floats in the summer and skis in the winter, wheels being only occasionally utilized during the changeover process, and one undercarriage sufficient to handle several airplanes.

Print Feb. 9/46

It is perhaps no exaggeration to state that the introduction of Fairchild Cabin Monoplane did more to speed up the opening of the Canadian Northlands than any other single factor. Prospecting for minerals without the use of the airplane is an extremely slow and difficult business and the rapid developments of such well-known mining areas as Noranda and Rouyn in Quebec, gold fields in Manitoba and other centers in Northern Ontario were greatly facilitated by the use of aircraft, and in all of these developments Fairchild Airplanes pioneered and played a leading role.

Several attempts were made to introduce into Canada the smaller types of aircraft developed by the Fairchild Company in the United States but private flying in Canada was carried on at such a small scale that it was not possible to develop any volume of business from that source. Along with all other industries, Fairchild Aircraft Limited was seriously affected by the industrial depression of the early '30's.

During the summer of 1932 the Company gained considerable publicity through the utilization of the seaplane base for the stop-over flight by the Italian Air Armada commanded by General Balboa en route from Italy to Chicago.


In the closing months of 1937, the Company received an order from the Canadian Government for twin-engine Bristol Bolingbroke airplanes. Company designers and engineers were sent to Bristol, England, to obtain the necessary drawings and study manufacturing details. Many design changes were implemented during the early stages with consequent delays in tooling and jig structures but five (5) months prior to the outbreak of the present war Fairchild commenced the manufacture of Bristol Bolingbroke Aircraft.

During the same period, this Company, in association with five (5) other Canadian Aircraft Manufacturers, was awarded a contract by the British Air Ministry for the manufacture of twin-engine Hampden Bomber Aircraft.

Certain specific components for the Hampden were allotted to this Company and their manufacture was started in June 1939.

At the commencement of the War, Fairchild had approximately 1,000 employees with a total plant area of 58,000 square feet. The Hampden components were completed in the early part of 1942 and the final contract for the manufacture of Bolingbroke terminated in the summer of 1943. At this time the plant area had been increased to approximately 300,000 square feet with a personnel of 6,500. During 1943, the Company carried out certain modifications on the Fairey Battle Aircraft.

Prior to the cessation of work on the Bolingbroke Aircraft, tooling was well under way for the manufacture of the SBF Curtiss "Helldiver" Aircraft for the U.S. Navy. Construction to provide additional space of 300,000 square feet was undertaken during the winter months of 1942-43. In spite of the severe cold weather which was

then encountered, the work was completed ahead of schedule.

In order to facilitate expanding production and additional test flying, the Company leased a Plant at St. Hubert previously occupied by Canadian Associated Aircraft. Here all "Helldiver" aircraft final acceptance flights were carried out. The aircraft were then flown directly to bases in the United States by U.S. Navy pilots.

Throughout our War contracts, maximum monthly production of military aircraft was always attained and Fairchild may justly be proud of its achievement.

Production and Engineering Problems during World War II

(a) Bolingbrokes:

There were many features of the British designed Bolingbroke which were difficult to duplicate in Canada during the early years of the war as some materials were extremely critical and others impossible to procure. The aircraft itself was not conducive to quantity production, many of the sub-assemblies being too complicated for large scale manufacture. It was, therefore, necessary that many parts of the aircraft be redesigned for simplification. Certain aluminum and steel bar items and aluminum alloy parts were substituted by fibre which was easily obtainable at a lower cost. Intricate machine shop designs were discarded and automotive parts obtainable in local shops were installed satisfactorily. Special bolts, nuts, etc., were replaced by standard products. Thirty-three different types of cotter pins were reduced to three items.

Seats, radio crates, parachute stowages, etc., were manufactured of high grade steels, welded in hundreds of parts. The radio crates were redesigned to use only three pieces of common steel, with two welds. This was done by bending tubing throughout its length into required shapes, instead of joining several pieces by oxyacetylene. Steel on this tubular construction was changed from aircraft material to low-grade commercial steel, and the whole group of components subcontracted to a modernistic chair manufacturer, who produced redesigned jobs at 200% production speed-up over original schedule, at one fifth of the cost.

Straight ball bearings and self-aligning bearings were a particularly difficult procurement problem.

At one period of the Bolingbroke contract the supply of British engines became critical. Our engineers accordingly made design changes to provide for Pratt & Whitney Twin Wasp Junior engines. Fifteen (15) of our Bolingbrokes were powered with these engines and later a prototype airplane with a Wright Cyclone engine installation was manufactured under engineering supervision and successfully flown.

C
Stack

FAIRCHILD AIRCRAFT LIMITED
LONGUEUIL, P.Q., CANADA

February 7, 1946.

File

McGill University,
Purvis Hall,
1020 Pine Ave. W.,
Montreal, P.Q.

Attention: Miss Beatrice V. Simon.

Dear Sirs:-

We duly received your letter of the 16th ultimo requesting financial statements etc. of our Company.

We now take pleasure in forwarding you herewith -

(a) Brochure containing a short historical write-up, together with photographs of military airplanes manufactured at this Plant during World War II,

(b) Financial Statements for the years ended June 30th, 1940 to 1945 inclusive. (We are unable to send you copies of previous reports as we have no further copies available for distribution.)

(c) Printed copy of our Agreement with Aircraft Lodge 712, International Association of Machinists.

We trust that these enclosures will serve your interest.

Yours very truly,

FAIRCHILD AIRCRAFT LIMITED

Bindoff
F. Bindoff,
SECRETARY.

FB:CB
Encls.

(b) Curtiss "Helldiver" SBF:

This carrier-based airplane was manufactured wholly from engineering data supplied by the Curtiss-Wright Corporation, Columbus, Ohio, U.S.A. The chief problems arose from the numerous design changes actuated from the information obtained after actual operational combat flights over Japanese territory.

(c) Grumman "Tigercat" and Chance Vought "Corsair"

Both these military airplanes were carrier-based for combat in the Pacific zone. Manufacture of the main component parts etc. was commenced at the end of 1944. They were specifically designed for the U.S. Navy and manufacture continued at an intensified rate of production up to the termination of the war with Japan.

POST-WAR

At the termination of the war with Japan, all military aircraft contracts were cancelled and the total plant personnel has now been reduced to approximately 1,000.

In the early part of 1945 a wholly-owned Subsidiary named Faircraft Industries Limited was formed for the chief purpose of manufacturing factory-built homes in the low-priced field. This Subsidiary is now in operation and employs approximately 350 persons.

Our design and engineering staff are presently engaged in designing a Cargo Airplane suitable for Canadian operators servicing northern territories.

Our Company has been requested by the Canadian Government to submit a design with specifications for a Twin Engine Aircrowd Training Airplane (prototype) for the R.C.A.F. Should a contract be awarded, production of three (3) prototype aircraft will commence during the summer of the present year.

1. The first step in the process of decision making is to identify the problem. This is a critical step because it determines the direction and scope of the entire process. It is important to clearly define the problem and its context, as well as to identify any relevant stakeholders and their interests.

2. Once the problem is identified, the next step is to generate possible solutions. This involves brainstorming and exploring various options, as well as considering the pros and cons of each. It is important to be creative and open-minded, and to consider a range of perspectives and interests.

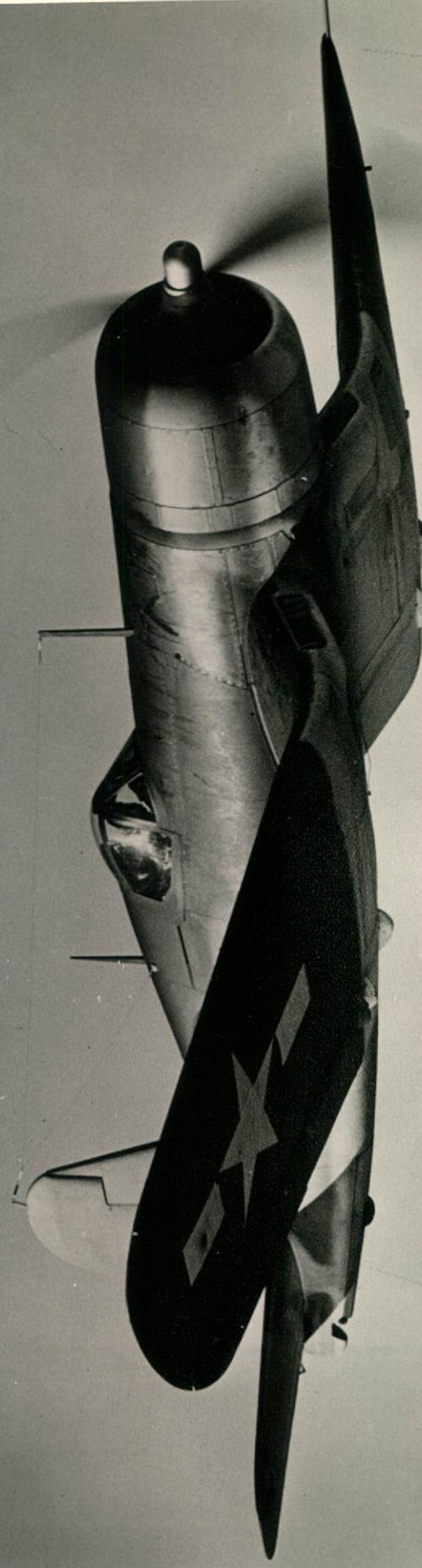
3. The third step is to evaluate the potential solutions. This involves assessing the feasibility, cost, and impact of each option, as well as considering the ethical and social implications. It is important to be objective and to consider the long-term consequences of each option.

4. The fourth step is to select the best solution. This involves choosing the option that best addresses the problem and aligns with the organization's values and goals. It is important to be decisive and to communicate the chosen solution to all relevant stakeholders.

5. The fifth step is to implement the chosen solution. This involves developing a plan of action, assigning responsibilities, and monitoring progress. It is important to be proactive and to anticipate potential challenges and obstacles.

6. The final step is to evaluate the outcome. This involves assessing the results of the implementation, as well as identifying any lessons learned and areas for improvement. It is important to be reflective and to use the experience gained to inform future decision making.

BRISTOL "BOLINGBROKE" MK. IV-T



CURTISS-WRIGHT "HELLDIVER"

CHANCE VOUGHT "CORSAIR"

GRUMMAN "TIGERCAT"

