1991 Highlights

- While Western World aluminum demand was stable in 1991, increased primary production by Western producers and increased exports from the former Soviet Union led to an oversupply of the metal.
- Market prices for primary aluminum fell through the ycar and by yearend, when adjusted for inflation, were the lowest ever experienced by the industry.
- Alcan, one of the largest aluminum producers in the world, produced a total of 1.7 million tontes of primary aluminum, epresenting 12% of Western World production. However, in light of the world oversupply of aluminum, Nean reduced production by 143,500 tonnes, on an annualized basis, towards year-end.
- Nean shipped 2.2 million tonnes of ahoninum, 61% of which was in the form of valuc-added fabricated products.

Contents

Introduction I
Environment 2
Recycling/Sccondary Smeling 3
Raw Materials 4
Primary Production 6
l'abricated Products 8
Technology, Research and Development 10
Historical Review 12
Analysis of Sales 13
Gleven-Year Summary 14
Western World Aluminum Data 16
Alcan Companies Worldwide 18

Terms

In chis booklet, all amounts are expressed in Linited States dollars and all quantities are in merric tons, or "onnes'. A tome is 1,000 kilograms, or $2,204.6$ pounds. Al facls arid figures are as at December 31, 1991, unless otherwise indicated.

A "subsidiary" is a company controlled by Alean. A "related company" is one in which Alean has significant influence over management but owns 50% or less of the voling stock.

The word "Company" refers to Alcan Aluminium
Iimited or, as the context requires, 20 a subsidiary.

Trademarks

The word ALCAN and the Company's symbol are registered as trademarks it more than 100 countries.

Headquarterced in Moncreal, Alcan is the parent of a worldwide group of companies involved in all stages of the aluminum industry. Through subsidiarios and aclated companies around the world, Alcan's activities include bauxite mining, alumina refining, aluminum smoling, manufacturing, sales and recycling.
It the 90 years since it was esablished, Alean has developed a unique combination of competilive strengths, with low-cost, owned hydroclectricity in Cianada, proprictary process techoology and international diversification. Foday, Aleath is one of the world's largest aluminm companies.
A corporate mission statemont, originally published in 1936 and revised with minor changes in 1990 , seas forth Alcan's goals as a multimational organization:
> "Alcan will be the most innovative aluminum company in the world. Through its people, Alcan will be a global, customeroriented and environmentally responsible enterprise commilted to excellence and lowest cost in its chosen aluminum and related businesses. In the 1990s, Alcan's return-on-equity target is to outperform the Standard \& Poor's Industrials."

The Alcan Group is a multicultural and multingual enterprise reflecting the differing corporate and social characteristics of the many countries in which it operates. Within a universal framework of policies and ohjectives. individual subsictiaries atnd divisions conduct the ir operations with a large measure of automony. The document, Alcon, Its Puppoie, Objectives and Policies, was first pulalisbed in 1978 in 11 languages to strengthen employec awareness worldwide of the general principles and policies which lad guided the conduct of Alcan's business over the years. This document was updated and reprinted in 1991 and is available from the Company ирои г"quest.
Ower 50,000 people are directly employed by the Company, with housands more cmployed in its related companies. Alcan is a publicly-owned company with some 33,500 holders of its 223 million common stares and 2,500 holders of its preference shares distributed internationally the majorily in North America.

A company as fully integrated as Alcan has many operations that interace with the enviromment from the mining of bauxite and the production of aluminum through to the collection and recyeling of used aluminum products.

For Alcan, environmental responsibility is a primary consideration in all of its accivities. The Company's commitment, first articulated in 1978 in the publication, Aheon. Its Pumpose. Objectioces and Policies, is spolled out afresh in is Environmental Policy Statement, published in 1990:
> "It is the policy of Alcan Aluminium Limited to achieve compatibility between the environment and the processes and products of its operations. Alcan and its subsidiaries will take those practical steps necessary to prevent or abate adverse impacts on the environment which may' resull from their operations and products. They will respect the local legal standards and quickly implement such changes as are appropriate to achieve compliance. They wrill minimize waste and seek to achieve the most efficient use of energy and other raw materials."

The effective implememation of this policy is ackieved in two ways. The first is an annual assessment of cach operating company's environmental performance.

This assessment cvaluates the operation under cight headings. The first four cover the identification of problems and risks inherent to processes and products, the degrec of compliance to local legislation, the financial imptications of proposed action plans and the requiremenes for rescarch and developmenc. The last four areas covered in the anrual assessment involve addressing the status of personnel expertise and awareness in environinental matuers, communications and training, emergency preparedness and community relations.

The second way in which implementation of the policy is monitored is by envirommental compliance reviews. [his formal revicw is carricel out at regular intervals in each plant by a team of professionals to verify
compliance with legal requirements and the Acan policy. The review team also assesses the effectiveness of management systems in environmental control, The tam then submits a report, with appropriate recommendations, to local plant and national managements and to Alcan's Environment Department in Montral.
The annual assessments, which started in 1990, and the compliance revicws, which are being extended to the whole of Alcan in 1992, heighten the level of emironmental awareness and employee involvement, and help refue action plans and rescareh and develoment (R \& D) activities. As for financial commitments, expenditures on emvironment-related projects for 1991 motalled $\$ 110$ million and, for 1992 , are largeted at $\$ 120$ million. These include close to 310 million that is spent ammally for $\mathrm{R} \& \mathrm{D}$ expenditures related to the environment.

Among the majos envirommental activitics undertaken by Alcan over the past years are the Quebec smelter relouild program, the rehabilitation of land used for bauxite mining in Jamata and Braxil and the expanding recycling activities in Nonh America and Europe. Other cxamples of recent Alcan activitics are:

- A new 40 -acse wetlands system al a rolling mill in Kentucky, L.S.A., which reduces water usage and minimizes wastcwater disposal.
- A dross recycling plant in Quebec, which uses a plasma technology to recover aluminum and other reusatble materials.
- Raw matcrial and process modifications al Arvicla Works in Queloce and Kitimat Works in British Columbia, which have reduced smetter PAH (polycyclic aromatic hydrocarbons) emissions to 15% and 25%, respectively, of what they were in 1981.
- Improved waste managenent (reduction, recycling or reuse, of paper, wood, foil laminates, lubricans, scrubber or process sludges and by-protucts at Alcan companics throughout the Group.
While environmental improvenents have been achiowed, Alean faces ntany challenges not the least of which is to remair cost-competitive while meeting cominually rising environmental standards. Innovative enginecring solutions coupled with the commiunent and involvement ol Alcan employecs at all levels are the key to success in this imporant ficld.

Recycling plant capacities - as at Decomber 31, 1991
(thoussunds of tornes)

Aluminum is one of the most recyelable materiads in the markelplace. J'he metal can be rejucatedly recyeled into the same or other products with effectively to deteriotation in quatity or in the motal's intrinsic value. In addition to the cmironmental advantages of almminum recyeling, there are exomomical benclits. Recycling aluminum requires only five per cent of the energy tequired to produce die primary metab. Dad atumimm's high scrap value, abom two-thirds that of its primary value, is a great incontive for collection.

Anmest one-thirel of the aluminam consumed in the Western World is produced from recected metal. White mose consumers today associatc ahmonnm mecyeling with used beverage cans, Clics acmally represem loss han onequather of the worldwide recycling business. Apant from can recyeling, the industry also includes ficilities that temeit sazp from a wide range of used atuminum products such as automobile parts, cookware, household siding, aircraf! fusclages and much more Typically: these secondary smeders' produce foundry atloys for use in shape cassings.
For its part. Alcarb has a growidg participation in the recycling industry, By the end of 1991 , the (ompanys ammal recycling capacity was aboul 489,000 tomacs will a firther 153,000 tomes in its related companies.
Alcan operates three filly owned facilities for the prochechon of foundry alloys primarily from recyeded aluminum, onc each in Cianda, Italy and the Linted States. A L.K. Cacility is operated by a related company. Anobler related company oprates three foundry alloy plants in Japan and one in Thailand. Mose of these plants sorve domestic automonive markecs.

In the case of CBCes, Alean has a well-established and growing Norah American recycling aework that procesect approximately 10 billion cans in 1993 . The Company remelts LBC's a dhree locations in the Linited States, producing now can shee ingot foom cans either purchased from L.S. collection companics or its own cuscomers or gathered theough is Canadian collection centres. The Catadian sustem encompasses three companies based in British Cohumbia, Ontario and Quebec to collect LBC from atoross the country,
In October 199), Akan opened the European Community's lirst declicated EBC recycling plant at Varrington, England, with a capacity to process about 2.5 billion cans per year. The Company is contianing to clevelop a domestic collection network to feed the facility. Throughou Fiurope; the Company plays keading roles in jom industry programs to promote abminum collection and rececling.
Alaun also operates an conviroumentally improved operation in Quebec for the recovery of alxmmum frome the dross that forms on the surface of molten meval. And in Italy, the Company operates a plant for the recovery of aluminume and sate from saline stag, a bypmoduct of ahminum recyeling. As a matere of course, Acan operates facilities in many plants orecye atuminum scrap gencrated internatly by fabricating activilies.

Alumina capacities - as at December 31, 1991 (therexands of (ivnere)				
Locations		$\begin{array}{r} \text { "\% of } \\ \text { mwiscthip } \\ \text { by Nlean } \end{array}$	$\begin{aligned} & \text { Amual } \\ & \text { Capacity } \end{aligned}$	$\begin{aligned} & \text { Ncan } \\ & \text { shatic of } \\ & \text { capacity } \end{aligned}$
Subsidiaries				
Smelter-grade alumina				
Canada	Vandreuil Jompuicro. Qurtes	100	1,130	1,150
Jamaica	Kirksinc. \andarater Lwation Si. Culuring		1.000	930
Ireland	Aughimisl) I.imervich.	63	1.1000	650
Brazil	Ouro Preco Minas ©ierais	100	1.50	1.50
	Total melter-g alumina	rade	3,300	2.880
Mainly chemical aluminas				
United Kingdom	Burniviancl Filtshiric. Scotand	100	120	120
Total subs	diaries		3,420	3.000
Rellated sompanies				
Smelter-grade alumina				
Australia	Gladstone Quectstand:	21.4	3,3225	712
India	Belgaum Karanataka) Muis (Bilam:		235	100
Guinea	$\begin{aligned} & \text { Kimbo } \\ & \text { Fіті: } \end{aligned}$	10.2	630	120
Brazil	Nlumat: sing luis	10^{*}	1,000	100
	loral smelter-g. alumina		5,207	1,032
Mainly chemical aluminas				
Japan	Shimizu Shizuoke-ker	45	4.50	203
Total relat	d companies		5,637	1,23.5

*Is of Warch 31. 1992

Aluminum is produced through the electrolytic reduction of alumina (aluminum oxide) that has been extracted from bauxite (the ore by a chernical process. Beween four and five tomes of batuite are required to produce approximately wo tomes of alumina, which yields one lonne of mctal.

Bauxite:

Alcan obtains its batuxite from mining sulsidiarics, consorlium companies and thirel-patty suppliers.
Via its $12 \% \%^{*}$ iuterest in Mineraço Rio do Norte a bauxite mining consortium in Brazil, Acan supplies the bulk of the reguirements for its Jonguicre, Qucbec, refinory. Alean has an indirect 13.3% interest in Compagnie des Bauxites de Gumee. Fom this, the Company supplies its share of bauxice for the $60^{\%} \%$-onned Aughinish Alumina Limited joint venture in Ireland and also ships bausite to its phant in Qucleec and to third patuics. Australian bauxite: from third parties is used to supply Alcan's 21.4% interest in Quecnsland Alumina Limited and a related-company reflinery in Japan.
The Jamaican and Brazilian operations, the selated company in India and Alcan's interest in Guinca all produce alumina from their own batuxite, Alcan participates in a joint venture in Ghana, which ships bauxite to the Burmusland plant in the Linited Kingdom. A Mataysian subsidiary, whirh shipped bauxite to a related company in Japan and to third partics, was sold in carly l'chruary 1992.

Alumina:

The alumina produced in Brazil, Canada and India is latgely consumed by Acan's smelters in those countries, The Australian alumina is primarily used at the Kuri Kurri smelter in Australia, It is also shipped to the Kitimat smedter in Canada. Jamaican alumina is supplied to Alean smeders in castern Canada and the Linted States.
20 Alumina from the Aughinisl, Ireland, refinery is shipped (1) Alan's Lynemoutis and lochaber smelers in the United Kingdom and to third partics in Europe. Alumina from Guinca is also shipped on thired parties in Europe.
Alumina is also the starting material for a wide varicty of inorganic chemical products. The Vaudreuil refinery in Canada, although mainly a supplicr of sucher-grade alumina, does produce a significant quantity of chemicalgrade aluminas. For its part, the Japanesc alumina is mainly used in the chemicals business, but some does go to the Kitimat, Brinish Collumbia, smelter in Canada and to a related compary's Kambara sucilter in Japan. All of the output of the Bumpisland refinery in the Linited Kingdom is devoted to chemical products.
Bringing these and other materials together is an Neanowned global transportation network that imeludes freight trains, bulk cargo vessels and port facilities.
\triangle Alumina Refining

Smelter capacities - as al Decombor 31, 1991
(thousands of (tnmet)

Locations	$\begin{aligned} & \text { Q/o of } \\ & \text { ownecship } \\ & \text { by Nlean } \end{aligned}$	$\begin{aligned} & \text { Amonal } \\ & \text { capacioy } \end{aligned}$

Subsidiaries			
Canada	Alvida Jonquicre. Queber)	100	232
	$\begin{aligned} & \text { Grande-Baic } \\ & \text { Ia Baie Quatwe: } \end{aligned}$	100	180^{*}
	Laterricre Olicoutimi Ontax	100	204*
	Slatwinigat Ouarlece	100	81
	Isle-Malignc (Alma, Quebec)	100	73
	Beauhamois Sctocharille (Ouclace:	100	$18 *$
	Kitimat British Colmmbia	100	272*
	Total in Canada		1,093
United States	Seloree Kemuck	100	180^{*}
United Kingdom	L, whemouth Angthumertanci. foughand	100	130
	Iodaber Invernes-sinire. Acoland	100	38
	Kinloch]even Argyll, Scotimet,	100	11
Brazil	Ouro Preto Amina Gerais:	100	$51^{* *}$
	Aratu Bahid:	100	58
Australia	Kumi Kuri Now Somul Walles,	73.3	150
	Total outside Cimada		618
Total subsidiaries			1,711
Related companies			

Japan	Kambara Shizuok:-k(n),	15.0	34
India	Bolgaum Kitmathaka	39.6	73
	Hirakicel Oтіка;	39.6	24
	Alupuram Kinala:	39.6	20
Total related companies			151

[^0]Numinum is produced fiom almmita by an sectorlytic process which uses large guamities of electrical encrgy to soparate aluminum from oxygen in the alumina. For this process, a smeler requires anywhere between 13,000 and 17,500 (D.C.) kilowath-hours of chectricity to produce one conne of aluminum.

Noan owns hydroclectric power generating facilities in Canada with a total installed capacity of 3,583 megawalts, of which 2,740 megawatts are classified as firm power capacity. These genctating facilities supply all the power needs of Alcams Canadian smelers. During the summer of 1991 , the expansion project for the hyclroclectric facility at Kemano in British Columbia was suspended in light of the uncertainties introduced by a federal court judgment (which is being appealed), quashing the 1987 Kemano Setument Agrecment with the Camadian and B.C. govemments.

I:lectric power for smelters outside Canada is generated both fiom hydro facilitice and themal stations principally coal-firedj. About one-lhird of the total power supply for the non-Canachan smeluers comes from (Company-owned imstallations.

Acan is one of the barges primary aluminum producers in the world with two-thinds of its primary smeling capacity being powered by low-cost, owned hydroelectricity. 'lhs company owns and operates 14 primary aluminum smolters with a total rated capacity of $1,711,000$ tomes jocs year, including $1,093,000$ tomes in Canadat. Production at Alean's new Latericere smelter in the Sagucnay I ac-Saint-Jean region of Quchee reached its Cull capacity with the start-up of the final 50,000 -tome phase during the second guarter of 1991 . As with earlier phases, the new tonnage replaces older and tess envirommentally sound equivalenc capacity at Arvida Works. Alcan's related companies operate four other smelters ouside Carida with a total rated capacity of $1.51,000$ tomes per year.

Duing 199!, Alean's Canadian smelecrs produced $1,086,000$ tomes of primary aluminum (or 99.4% of rated capacity, and subsidiaries in other couneries produced 609,000 tomes.
Nost of the primary aluminunt produced in Canada is exported to Alcan's fabricating opecations and to thirdparty customers in the Lnited States, Liurope and Asia. Pant of the production of che Kurri Kurri smelter in Ausuralia also serves Far Lastern customers. Alcan's other smelters generally serve domestic ingot markers or fabricating plants.

Acan's primatry producion sales to third parties throughout the world totalled 666,000 tonnes in 1991. Over 62% of ingot shipments were in the form of valueadeded products, such as sheet ingot, extusion billes and foundry alloys.

Alcan Group

Aluminum Production Operations
Primary Aluminum Smelting

- Super Purity Aluminum Refining
?. Recycting/Secondary Smelting
(For details, sec page 3)

Fabricating capacities - consolidated subsidiaries only (thousauks of bomes)	
Fabricated aluminum products	Amual capacily
Rolled products	1,340
Extrusions	250
Wire and cable	180
Castings and other	100
Tota'	1,370

While Alcan has a leading position in international markets for ingot products, the Company's principal sales are of fabricated aluminum products. In 1991, shipments of fabricated products decreased to $1,333,000$ tonnes, representing 61% of total aluminum shipments. Fabricated products produced from customer-owned scrap added a further 145,000 tonnes.
Alcan's fabricated products business is composed of a number of large, capital-intensive rolling operations as well as dozens of smaller downstream busincsscs or enterprises. In 199I, the downstream enterprise companics accounted for approximatcly 38% of Alcan's total worldwide sales of $\$ 7.3$ billion. Through its many downstream businesses, the Company manufactures and sclls a wide varicty of end products and services, using aluminum and related materials to meet the needs of both existing and emerging markels. Through subsidiarics and related companies, Alcan carries out its fabricating operations in over 150 plants in 18 countries.
Abour half of the aluminum produced by the Alcan Group is converted into rolled products such as shect, plate, and foil. A major portion of Alcan shect is can slock for beverage containers. Other important end uses for shcet include building and construction, automotivc and transportation products, the printing industry and the industrial distribution markec. Plate products are used primarily for acrospace, defcnse and transportation applications. 'The Company also rolls foil for household and commercial packaging applications and for industrial products. Alcan is a major supplicr of rolled products in North America, and the largest produccr of rolled products in Europe.
Another important use of aluminum worldwide is in extruded shapes. The Company produces and sells extruded products for the building and construction, transportation and enginecring markets in 15 countrics, including Australia, Brazil, Canada, India, the United Kingdom and the United States. Examples of end-use products using extrusions are windows and doors, ladders, automotive bumpers, truck bodies and aircraft components. Moreover, the Company is a major supplict of extrusion ingot to independent extruders.
Aluminum is also cast and rolled into rod which is then drawn into wire and stranded into cable for the transmission and distribution of electricity. Wire is also used for non-electrical applications such as welding wire, rivers and zippers. Alcan's main wire and cable businessea are in Brazil, Canada, the United Kingdom and the United States.
In addition, Alcan casts molten metal into machine, automotive and aircraft components and is a supplier of aluminum pistons and other engine components to the automotive industry in Germany and North America. The Company also sells alloys to independent foundries in Australia, Canada, Italy, the United Kingdom and thr United States.

Alcan Group
Fabricating Operations
(6) Sheet and/or Foil Rolling

O Extrusion
Other Fabricating

Alcan International Limited Research by Process TechnoIogy

Total for 1984-\$44 million*

Total for 1991-\$80 million*

[^1]* These amounts are included in the total R §o D expenses for the Alcan Group, which for 1984 and 1991 were $\$ 66$ million and $\$ 131$ million, respectively.

Alcan's principal group resource for wechnology is Alcan International Iimited, which is headquartered in Montreal and consists of wo divisions: technology, and research and development ($\mathrm{R} \& \mathrm{D}$).

The techmology division, composed of approximately 90 people, is concenned with mannaining, improving and developing the ecthologies used by Acan's operations worldwide. The division is organized around the three major process technologics of Nlean's operations, tamely raw materials, reduction (smelting) and fabricating, and is supported by a small corporate enginecring group. It focuses on assisting operating units to achicve increased productivity, higher quality and reduced costs. It is also responsible for the intellectual property management that safeguards the Company's process and product technologies and trademarks.
The R \& D division of Alcan International Limited plays an important role in innovation, through basic and applied rescarch. The organization is composed of about 600 employecs located largely in three latboratorics: two in Canada (at Kingston, Ontario, and Jonguierc, Qucbec) and one in the L.K. (Banbury, Oxfordshire). The division also works closely with the laboratories of Nippon Light Mctal Company, Lid, and 'Ioyo Aluminium K.K., Acan's related companics in Japan. While the historic focus of Alean's $\mathrm{R} \& \mathrm{D}$ efforts has been on process improvement, a significant and increasing research cffort (17% in 1991) is related 10 recyeling and environmental issucs. Nso in recent years a major focus has been on cxploratory work to develop both new products for the mainline business and the new techrologies required to pursuc related new opportunities.

A wholly owned materials rescarch laboratory, Mantabs, Ine., in Cambridge, Massachusetts, permits the sperialized testing of new materials. Acan International Litnited also has overall functional responsibility for the development of new technology businesses.
Alcan's national companies operate Applied Enginecring Centres located close to key markets. Aucomotive contres in the United Kingdom, United States and Japan are the most recently established. These contres are focusod on major products and provide tochnical and product development support to customers, drawing greatly on the resources and core scientific disciplines in the rescarch contres.
Alcan Incemational's market-related development effor was 68%, or approximately 555 million, of its total expenses for 1991. 'I'his offort was aimed at identifying and building opportunitics related to its mainstream business and techmologics. New product ideas and improvement of existing products build on Alcan's existing strengths which, in tum, point to certain target scctors for cxploration and development. Many of those ideas originate, or are developed, in Alcan's own research centres in North America and Europe. Others may be brought in from the outside through accuisition or joint

Market-related product development

venture, but a key criterion in all cases is the relatedness of the opportunity to Alcan's existing business or technology.
In the various target sectors, a number of projects are under way, each with a different scale and time horizon. A few examples of those that have reached, or are close to, commercialization may illustrate the scope and achievement of the new product strategy:

- The demand for lighter, more fuel cfficient cars drives the trend toward greater usage of aluminum in the automobile, Alcan's adhesive bonding and spot-welding icchnology allows for the production of body structures and other components, about half the weight of steel, on conventional production lines. It has been tested on many protorype models and adopted for the production of the Jaguar XJ220 supercar. This is just one of many technologies for the use of aluminum that could open up major new opportunities in the automotive marke.
- In the materials field, Alcan's metal matrix composite, Dwalcan ${ }^{1.4}$, aimed at enginecring and automolive applications, is produced at a 12,000 -tome capacity plant in Quebec. Automotive applications such as brake rotors and drive shafts are being actively pursued in cooperation with a number of major companies. Another new metal/ceramic material, using a revolutionary, near final shape technology, is being produced for wear-resistant, industrial equipment components at Alanx Products L.P., an Alcan subsidiary in Delaware, in the Unired States.
- Acan's subsidiary, Alupower, Inc., is the leading company in the ficld of aluminum-based electric power sources. "These high-capacity energy systems offer" much reduced volume and weight, compared to conventional batteries. Market applications include standby batterics for the telecommunications industry, propulsion power for underwater vehicles, and range extenders for road vehicles.
- In rail transportation, Alcan has cstablished Tarco, a joint venture with Thrall Car Manufacturing Company, to design, build and market aluminum rail cars. They offer uncqualled fuel efficiency in the transportation of bulk commodities such as coal and grain and are cconomically recyclable. To date, with over 3,500 orders for aluminum coal cars, Tarco has proven to be a commercial success.
- In the recovery of waste energy from power station cooling water, a new industrial heat exchanger system based on aluminum is being tested in pilot applications. Successful commercialization of this system would open up a significant new market opportunity.

The history of Alcan may be summarized as the growth, over a period of almost 90 years, of an integrated aluminum cnterprisc, based initially on hydroelectric power in Canada and cxlending to other countrics on olher continents. In the process, Alcan has become one of the largest aluminum companies in the world and one of the largest multinational companics based in Canada,
Alcan had its beginnings in Shawinigan, Qucbec. In that town where hydroclectric power facilities had been developed, the first primary aluminum in Canada was produced on October 22, 1901. The operation was then a subsidiary of Aluminum Company of America (Alcoa), the pioncer producer on the North American continent.

The Canadian operation was incorporated in 1902 as Northern Aduminum Company but in 1925, its name was changed to Aluminum Company of Canada, Limited. It was also in 1925 that the rights were acquired to develop the Chute-d-Caron and Shipshaw power sites on the Sagucnay River, some 241 kilometres northeast of Shawinigan. To utilize the massive and largely unused hydroclectric potential of the Saguenay Lac-Saint-Jean region, the Company built and started its second aluminum smelter in 1926 at a now town called Arvida, today part of the city of Jonquiere.
Only wo years later, in 1928, Alcoa decided that it should divese itself' of its principal subsidiaries ousside the United States, including Aluminum Company of Canada, Limited, and transfer them to an independent Canadian company that could focus its activitics on the development of the aluminum industry in Canada and internationally. The scparation was achicved by transferring such subsidiarics to that new Canadian company and issuing the shares of the new company to the Alcoa shareholders on a prorala basis. The directors and management were independent of Alcoa from 1928 onwards; a final adjudication of legal procecdings in 1950 cnsured that any common identity of major sharcholders in the two companics was also removed.
Despite the adversities of the Great Depression of the 1930s, the newly independent company pursucd its mission of developing aluminum fabricating activities in Canada, the U.K. and Europe that could provide outlets for the ingot from its Canadian smelters. Although the Company worked hard and successfully to develop new uses and markets for its metal in Canada, close to 85% of its smelter production had to find export markets. An international chain of sales offices was cstablished. Also in the pre-war period, the Company was involved in pioncer clforts to build the industry in India, Australia, China and Japan.

The outbreak of the Second World War in 1939 brought unprecedented demand for aluminum in the manufacture of aircraft for the military effors of the allied nations, particularly Canada, the U.K. and, later, the U.S.
To meet the demand, Alcan rapidly completed several additional hydroclectric sites in the Saguenay-Lac-SaintJ Jan region of Quebec and was able to increase its smelter production more than five-fold to over 500,000 tonncs on an annual basis. Fabricating plants to produce sheet and other components for aircraft were also rapidly built in Canada and the U.K.
Following the war, growth in civilian demand, aided by aggressive product development by the aluminum industry, required further expansion of Alcan's power and smelter capacity. As a result, hydroclectric projects were started in Quebec and construction began for the Kitimat-Kemano project in British Columbia. Power capacity was doubled in the 1950s and, by the end of the 1960s, Alcan's Canadian smelting capacity had also doubled to almost one million connes. In this period, the Company's fabricating capacity was also greatly increased and had spread to many countrics. Particularly noteworthy was the Company's entry as a major fabricator in the U.S. markets after 1960.

In the 1970s, new smelting operations were opened in Australia, the U.K., Brazil and India. In addition, new bauxite mining activities were undertaken in Guinca and Brazil, while the Company participated in new alumina production capacity notably in Jamaica, Australia and Ircland.
In the 1980 s, the Company was able to take advantage of a major restructuring in the international aluminum industry. Through the 1982 merger with British Aluminium Company ple and the 1985 acquisition of most of the aluminum assets of Atlantic Richficld Company in the U.S., the Company has substantially increased its presence in markets for fabricated products.
Pursuant to a rcorganization in 1987, Aluminum Company of Canada, Limited, which had been the principal subsidiary, became the parent company of the Alcan Group of companies and changed its name to Alcan Aluminium Limited.

More detailed information on Alcan's corporate history is conlained in the three volumes of Global Mission The Story of Alcan, available from Alcon's headquarters in Montreal.

Total Sales for 1991 - $\$ 7.3$ billion

Sales by product

Sales by region

Sales of Fabricated Aluminum and Non-aluminum Products for 1991 - $\$ 6.1$ billion

Sales by end-use market

[^2]Over 83% of Alcan's consolidated salcs are accounted for by aluminum products. Oher products include bauxite, alumina, specialty chemicals and plasties, as well as magnesium, rickel and stainless sted alloys that are sold principally through Alcan's discribution nctwork. Sales of all products totalled $\$ 7.3$ billion in 1991, consisting of fabricated aluminum and non-aluminum products of S6.1 billion and ingot sales of $\$ 1.2$ billion.
Alcan is the largest domestic producer of fabricated aluminum products in a number of countries including Canacla and the Enited Kingdom. The Company also has important market positions in Auscralia, Brazil, the United States and the Puropean Community, as well as in Japan through its related companics.
In addition, Alcan sells ingot products to aluminum fabricators and customers all over the world who, in curn, serve a varicty of end-use markets, inchuding:

- Building \& Construction: In North America, Alcan is a leading supplier of slece and extrusions for products used in new construction and renovation of residential, commercial and industrial buildings. Alcan also holds leading shares of the building sheet and extrusion markets in Australia, Brazil, Italy and the United Kingdom.
- Containers \& Packaging: While the United States continues to be Alcan's single largest gcographic market for these products, the fastest-growing markets are Lurope and Asia. In these areas, aluminum is making inroads into beverage carn markets, largely chuc to the metal's recyclability, while foil consumption is also on the rise. I'hrough subsidiaries in Europe and Yorth America and a related company in Japan, Alcan is a world leader in aluminum foil production.
- Electrical: The Conpany produces a full line of bare and insulated conductor products, ranging from proprictary building wire to specialized, patented cable for power transmission lincs. Alcan is an important supplier to electrical utilitics and contractors in Brazil, Cianada and the Cnited States.
- Transportation: In both Europe and North America, Alcan is a producer of castings, principally of engine and transmission components, for the automotive industry. In addition, the Company supplies specialized sheet products and proprictary brazirg technology for automobile radiators and heat exchangers. The Company also supplies high-strength plate and cxtrusions to the aerospace, marine, rail and truck markets. Alcan is also focusing on new sheet applications for automotive bodies and structures.

		1991	1990	1989	1988	1987	1986	1985	1984	1983	1982	1981
CONSOLIDATED INCOME STATEMENT ITEMS \% whan ...	Revenues											
	Solks and operating revenues	7,748	8.757	8,8339	8,529	6,797	3.956	3.718	5.167	3.208	4.644	4.983
	Other inceme	82	162	203	97	31	100)	113	1199	97	6	\%
	Total revernes	7,830	8.919	9.0 .47	8.626	${ }^{5}, 378$	6.05\%	5.3831	5.576	5.305	1.714	5.153
	Costs and expenses											
		6,455	6,996	6,682	6,072	5.117	1,63:5	4.692	4.229	4.183	3.318	3.891
	Depreciation	429	393	333	316	296	276	2.38	2.51	233	221	29
	Sclling, administrative and general expernes	635	6.59	61010	52.5	447	4165	38.	393	3392	362	365
	Researcha and developmene expenses	131	1.50	136	132	95	77	77	$6{ }_{6} 6$	(6)	5	43
	Inuerest	246	197	130	137	177	202	23:3	24.	25.5	23.	1331
	Spectiat charges and rationalization expenses							416				
	Oher experises Income tiaxes	$\begin{gathered} 163 \\ (104) \end{gathered}$	$\begin{array}{r} 65 \\ 126 \end{array}$	$\begin{gathered} 622 \\ 350 \end{gathered}$	$\begin{array}{r} 91 \\ .97 \end{array}$	$\begin{aligned} & 113, \\ & 2330 \end{aligned}$	${ }_{1610}^{510}$	53 187	$\begin{array}{r} 333 \\ 1: 31 \end{array}$	$\frac{32}{73}$	311 9	$1+2$
	Minorily interests	-	(1)	(16)	(2)	5	2	3	.	4	3	;
	Fequity income	89	211	97	97	35	5	15	16	11	16	4
	*Net income (Loss) from continuing operations	(36)	543	83.5	931	1133	2.31	183	247	89	15	278
	Extramedinary grin						26	36	37	15		
	${ }^{\text {Net income (Loss) }}$	(36)	543	83:3)	931	133	277	1.17	23.	10.4	4	$2 \cdot 3$
	Prefirenuce dividends	20	22	21	31)	316	33	33	31	31	13	11
	*Net income (Loss) attributable to common shareholders	(56)	321	81.4	901	397	241	180	253	33	3	$2 \cdot 4$
CONSOLIDATED BALANCE SHEET ITEMS ?u millum of iss												
	Working capital	1,110	1,222	1.376	2,115	2.039	1.66611	1.452	1.1883	1.152	1.361	1.186
	Property, plant and equipment - net	6,525	6.167	5.26i\%	4.2831	3.96 .3	39.94	3.875	3.6610	3.5 .510	3.701	3.264
	Total assets	10,816	10,649	9.508	8.615	7.66i0	7.118	6.365	6.6\% 19	6.6i(k)	6.6.3)	6.359
	Long-term debt	2,185	1.796	1.179	1.199	1.336	1.346	1.6i(e)	1.359)	1.199	1.749	1.884
	Deferred income taxes	1,126	1.092	1.014	1,0016	754	351	409	563	337	335	36.1
	Preference shares	212	212	212	211	10.5	121	398	145	337	310	13.39
	Common shareholders' equity	4,730	+,942	4.610)	4,1109	3.56 .3	3.116	2.746	2.966	2.799	2.511	2.631
PER COMMON SHARE (in USS)												
	*Net income (Loss) from continuing operations	(0.25)	2.33	3.58	3.85	1.63	0.97	(10) 97	0.93	11.29	0.31	1.41
	*Net income (Loss)	(0.25)	2.33	3.38	3.85	1.68	1.19)	(0.31	1.15	0.36	0.31	1.11
	Dividends paid	0.86	1.12	1.12	0.59	0.39	0.35	0.49	0.53	12.41	0,6i0	(1.36)
	Common shareholders' equity	21.17	22.19	20.30)	18.015	15.15	13.128	12.23	13.07	12.83	13.10	1.4.15
	Market price - NYSE close	20.00	19.50	22.88	21.75	17.92	12.5.5	12,89	12.78	17.67	12.39	10.22
	Consolidated aluminum shipments											
	Ingot and ingot praturis	1,363	1.488	1,518	1.14.46	1.410	1. 3883	1,3.10)	1,213	1.171	919	1.1037
	Total allumimum shipments	2,199	2.315	2.261	2.278	2.197	2.119	2,218	1.79919	1, \%12	1.707	1,317
	Consolidated primary aluminum production	1,695	1,651	1.6443	1.6119	1.587	$1.6+1$	$1.64+1$	1.5661	1.3383	1.297	1.395
	Consolidated aluminum purchases	591	6.46	718	716	593	489	16.5	49%	520	117	12%
	Consolidated aluminum inventories (md of. yru)	463	447	539	480	196	579	62.	7013	33.1	620	96i6
	Primary aluminum capacity											
	Cinmolidated sulusidiaries	1,676	1.683	${ }^{1.6185}$	1.1880	${ }^{1.6880}$	1.381	1, 18.41	1.1616	1.1619	1,593	$\begin{array}{r}1,483 \\ 1.432 \\ \hline\end{array}$
	Tosat consolidiated subsidfaries aud related companies	1,827	1,8336	1.8336	1.1331	1,85i	1.9105	1.905	2.0997	2.070	2.033	1.987
OTHER STATISTICS												
	Cash from operating activities (in millinn of (TS\%)	659	760	970	1.370	879	725	586	489	324	25.5	$2 \cdot 11$
	Capital expenditures (in miltys of ('ss)	880	1.367	1.466	6776	115	3.42	597	127	382	6if 3	97.
	Ratio of total borrowings to equity ("\%)	37:63	33:67	$26: 74$	$26: 74$	27:73	$31: 69$	37:63	3:66\%	36:64	43:37	11:99
	Average number of employees (in thousmd,	54	57	57	515	63	67	71	70	71	$1 i 7$	17
	Common shareholders (tit limmumd) at mf of sari)	34	33	40	41	46	19	59	67	59	51	17
	Common shares outstanding (in millions at mul of yar)	223	223	227	228	237	237	22.5	22.4	213	192	1383
	Registered in (Camada $^{\text {a }}$ \% $\%$)	68	54	4	54	4	43	16	96	13	5	43
	Registered in the Linited Stiates $0^{\circ} \mathrm{iof}$	31	4	54	43	53	32	19	39	+3	12	5
		${ }_{\text {(1) }}$	$\stackrel{11}{1}$	28	$2{ }^{3}+$	3 12	3	3 6	$\stackrel{3}{4}$	1	i	$1{ }^{7}$
	Return on average common shareholders' equity (\%)	(1)	11	19	2.4	12	8	6	!	3	\because	110

[^3]
Shipments of Fabricated Aluminum Products for 1991

Shipments by product

Shipments by end-use market

Shipments by region

[^4]Western Wond shipments of aluminum products reached an estimated 19.6 million tomes in 1991. This figure covers both primary and secondary/recycled aluminum shipped in the form of fabricated products, including castings.

- Flat-rolled products are the largest group of aluminum products consumed in the Western World at 43% of total shipments. The single most important product in this catcgory is can shect which accounts for over 33% of total sheet, plate and foil shipments. Extrusions account for 25% of total shipments and are used extensively in the fabrication of products such as doors and window frames. The majority of castings, which represent 21% of shipments, are used in the engines and transmissions of automobiles and light trucks. Rod, bar and wire make up 7% of shipments and are used primarily in clectrical transmission and distribution lines.
- 'The transportation market is the largest cnd-use market for aluminum products accounting for 23% of all shipments. While declining slighty from last year, this market has seen good growth in recent years largely due to the greater use of aluminum in automotive applications. Shipments to the comtainer and packaging market continuc to make good gains, primarily due to the strength of the North American aluminum beverage can market and increased penctration into European and Japanese markets. Over the last ton years, building and construction has seen the loss of market share in tradtional applications for alumimum such as windows and residential siding.
- North America, traditionally the largest consumer of aluminum, is now almose equalled by Europe, led by Germany. Another of the large consumer regions, and the fastest growing, is the Pacific, which accounted for 29% of total shipments in 1991, a significant increase over the previous year.

Primary and Secondary Aluminum Shipments
(miltions of fom

Primary

Secondary

Primary Aluminum Production and Capacity
(millions of tonnes)

Primaxy Aluminum Inventories and Spot Ingot Prices

From 1981 to 1991, total aluminum shipments in Wicstern Wond countrics grew at a rate of 2.5% per year, rising from 15.3 million tonnes to 19.6 million 10 nnes. The rapid cxpansion of markets for aluminum products such as beverage cans and automotive castings increased the consumption of secondary, or recycled, metal to an annual growth rate of 2.9%, while the consumption of primary metal saw a growth rate of 2.3%. Recycled metal represented 28\% of total aluminum consumption in 1991.

In 1991, Western World production of primary aluminum reached a new rccord level of 14.8 million tomes, with operating rates remaining close to 100% for most of the year. The increase in production is also auributable to a capacity increase of 300,000 tonnes per year in 1991 at existing smelters in Brazil and Canada, bringing total Wescern World capacity to 15 million tomes per year. With flat demand, this level of oupur caused a growing oversupply situation, which was cxacerbated by a large increase in exports from the fommer Soviet Union, In response to tising inventorics, Western producers announced production cuss of about 900,000 tonnes per annum in the second half of 1991 . Despite this situation, planned industry expansions are likely to add a further 7% to world capacity by the end of 1993.

Inventories of aluminum held by producers and in commodity exchange warehouses rose significantly during 1991. The surplus was due to flat demand, higher Western World production and an increase in exports from the former Sovict Union. Spot prices declinced stcadily to levels which are the lowest, in real terms, the industry has ever experienced.

NORTH AMERICA

Canada

United States

Alcan Aluminium Limited

1188 Shertrooke Suect Wish, Monneal, Qucbec, Camada H3a 3 G 2

Alcan Enterprises (Canada)
adelress as above;

Alcan Ingot (Canada)

Toronto-Deminion Centre, Toronto, Outario, Ganada M5K $1 \mathrm{~K} \mid$

Alcan International Limited

1188 Sherbrowke Sircel West, Aontreal, Qublece, Canada H3A 3G2

Alcan Rolled Products Company (Canada)
2 Sheppard Avonue Tast, Suite 500,
Willowdile, Ourario, Canada M2N $\mathrm{S}^{2} 7$

Alcan Smelters and Chemicals Ltd.
1188 Sherlurooke Siree West,
Monercal, Quebec, Canadi H3A 3G2

Parent company and world headquarers
lixtrusions, foil packaging products, rod, wise and cable, automotive castings, metal matrix composites, and falricated products such as truck bodies, trat exchangers and building products

Foundry alloys from primary and recycied aluminum

Responsible for worldwide technology, research laboratorics, intellectual property and technology sales:

Sheel, plate and foil products for: body, end and tab stock for beverage and food cans; semi-rigid containers, houschold foit and commercial packaging; the building and construction markets; heat exchangers; automotive and transportation applications; the distributor market; and a broad variety of other consumer and industrial proclucts. Effective March 19, 1992, also responsible for the collection system of used aluminum beverage cams for recyeling.

Primary aluminurn, ingot products, alumina and alumina-based industrial chemicals

Alcan Aluminum Corporation
100 Prieticw Plaza, P.O. Box 6977 , Clewand, $\mathrm{OH} 4400 \mathrm{~L}, \mathrm{~L} \mathrm{~S}$.

Alcan Enterprises (U.S.A.)

faddress as above)

Alcan Ingot

(arderess as above)

Alcan Recycling

(address as alowe)

Alcan Rolled Products Company (U.S.A.)
 (address as above)

Excrusions, wire and cable, pipe, building products, plain and converted foil products, metal matrix composites, as well as sales, marketing and distribution of high-performanec metals, powders and paste, trucking and transportation

Primary ingot

Foundry alloys from recyeled aluminum

Shect, plate and foil products for: body, end and tab stock for beverage and food cans; semi-rigid containers; household foil and commercial packaging; the building and construction markets; heat exchangers; automotive and transporation applications; the distributor market; and a broad varity of other consumer and industrial products. Effective March 19, 1992, also responsible for the recyding of used aluminum beverage cans.
Alcan (Bermuda) Limited
P.O. Box HM1 1386,
Hamilton, HMFX, Bermuda

Shipping, bauxite trading, alloying matcrials and insurance

CARIBBEAN

Jamaica

Alcan Jamaica Company
P.O. Box 222, Manderille, Janaica, W.1.

SOUTH AMERICA

Argentina

Brazil

CAMEA S.A. 99.6%)
Casilla de Correo 1900,
Buenos Aires, Argentima

Alcan Alumínio do Brasil S.A.
Caixal Postal 22041, CEP 01310,
Sio Paulo, Brazil

Sheet, plain and converted foil, cxtrusions and rod, foundry alloys, rigid containers and impact extrusions

Bauxite mining, alumina, primary aluminum, rod, wire and cable, plate, shect, plain and converted foil, foil comainers, extrusions, paste and powders, building products, heat exchangers and cooking utensils,
and the

Bauxite, alumina and related facilitis
*This hist names the principal subsidiaries or related companies in cach country in which Altan has a significant presence. A complete list is contained in the Company's $10-K$ Report, available from Alcan's headquarters in Montreal.

SOUTH AMERICA (continued)		
	Mineração Rio do Norte S.A. (12%) Caisa Postal 16230, Rio de Janciro, CEP 22210 RJ, Brazil	Bauxite mining
	Petrocoque S.A. - Industria \& Comércio (25%) Caixa Postal 14, CEP 11500, Cubatao. São Paulo Statc, Brazil	Calcined coke
Chile	Tubopack S.A. (45\%) Av. Mexico, 719, Sandiago, Chile	labrication of laminated tubes
Uruguay	Alcan Aluminio del Uruguay S.A. (89.92%) Casilla de Correo 789, Montevideo, Unuguay	Sheet, plain and converted foil, extrusions and tubing, wirc and cable, and other fabricated products
AFRICA Ghana		
	Ghana Bauxite Company Limited (43\%) Private Mail Bag, Ministry Posil Olice, Acera, Ghalia	Bauxite mining
Guinea	Compagnie des Bauxites de Guinée (13.8%) c/o Halco (Alining) Inc., 900 Two Alegheny Center, Pitusburgh, Pennsylvania 15212, U.S.A.	Batuxite mining
	$\begin{aligned} & \text { Friguia }(10.2 \%) \\ & \text { c/o Frialco, P.O. Box } 265 \text {, } \\ & \text { Gcorge Cown, Grand Cayman, } \\ & \text { Cayman Iskands } \end{aligned}$	Bauxite mining and alumina refining
EUROPE France	Alcan France (formerly Technal) 171, route d'Espagne, B.P. 1229, F 31037, Toulouse Cedex, France	Residential and commercial building systems
Germany	Alcan Deutschland GmbH Koclner Strasse 8, P.O. Box 5149 , D. 6236 Eschborn, Germany	Bare and coated sheet products, plain and converted foil, rigid foil containers, atutotive castings and impact cxtrusions
Ireland	Aughinish Alumina Limited (65%) Aughinish Island, Askealon, Co. Limerick, Ireland	Alumina refining
Italy	Alcan Alluminio S.p.A. Yïa Bruno Buozxi 12, 20090 Picye Emanucle MI, Italy	Barc and coated sheet, extrusions, utensil circles, heat exchangers and foundry alloys from recycled aluminum packaging materials
Norway	Vigeland Metal Refinery A/S (50%) P.O. Box 6, 4701 Vemesla, Xear Kristiansand, South Xorway	Super purity aluminum remelt ingors
Switzerland	Alcan Aluminiuxa S.A. 13, quai de lîle, 1204 Gencra, Swizerland	Metal supply management and metal sales
	Alcan Rorschach AG CH-9400 Rorschach, Switzerland	Converted foil and thin strip for packiging materials and technical applications
United Kingdom	British Alcan Aluminium ple Challonı Park, Gexiards Cross, Bucks, England SL9 OQB	Shect and remelt ingol, extrusion billet, foundry alloys and hardeners from primary and recycled aluminum, plate, tube and extrusions, bare and coated sheet and circles, plain and converted foil, scmi-rigid foil containers, aluminum-lithium alloys, superplastic and other high performiznec materials, high-strength gas cylinders, rod welding and general engineering wire, conductors and bare cables, building and architcetural as well as other fabricated products, magnesium foundry alloys, and aluminit- and zirconiumbased chemicals

PACIFIC
 Australia

China
Hong Kong

India

Japan

Malaysia

New Zealand

Thailand
Hong Kong

Alcan Australia Limited (73.3%) G.P.O. Box 4130 , Sydney, A.S.W., Ausiralia 2001

Queensland Alumina Limited (2), 4%) Numina refining G.1P.O. Box 374, Brisbanc; Qucenstand, Australia 4001
Nonfemet International Aluminium
Company Limited (32.9%)

Majia Iong, No "e Industrial Development, Ainton Dissrict, Shenzhen, China

Alcan Asia Limited 9/1, Dina House. Rutonjec Centre 1। Duddell Strect, Hong Kong	Trading in China, Hong Kong, Japan and Southeast Asia
Alcan Nikkei China Limited (51%) adolress an above)	Holding company for investmens by Alran and Nippon Iight Metal Company, Ltd. in ventures in China and 'rawan
Alcan Nikkei Korea Limited ($\mathbf{5 1 \%} \%$) (address as above)	'Irading in Korca
Indian Aluminium Company, Limited (39.6%) Box 36i, Culkura 700000 , Incliz	Batuite, alumita, primary ingot, rod, sheel, extrusions, foil, powter and paste, carbon paste and clectronic products
Alcan Pacific Limited 2622 Kasumigascki Buildiug, 3-2-5-Kasuinigascki Chiyodia-ku, Tokyo, Japan 100	Namagement office for investments in Southeast Asia and in the Far East

Nippon Light Metal Company, Ltd, (4.5%)
P.O. Box 5, lakanawa Post Olfice, Tokyo, Japan

Toyo Aluminium K.K. (48.9\%) Sumiseishimojima Building, 7F, 3-8, Kibakyulofimathi, 3-Chome Chuo-ku, Osak:i, Jipaut 541

Primary ingot, shect, foit, foil containcts, cetrusions, architectural and building products, and transporation cquipment extrusions, windows and doons

Aluminium Company of Malaysia Berhad (63.9%)
 P.O. Box 1096, 46870 Prtaling Jaya, Sclangor Darul Ehsan, Milaysia

Alcan New Zealand Limited
P.O. Box $98-4+4$, South Auckland Mall
Comre, Wij, Auckland, Now \% caland
P.O. Box 98-444, South Auckland Mall

Crure, Niij, Nuckland, Now \%ealand
Alcan Siam Limited $(70 \%$; \quad Shect and foil products
G.P.O. Box $11-870$,
Bangkok 10110 , Thailand

World Headquarters

Alcan's world headquarters are located at 1188 Sherbrooke Street West, Montreal, Quebec
Canada H3A 3G2
Telephonc: (514) 848-8000
Telecopier: (514) 848-8115
Cable: AlCAN MONTREAI (CANADA)

Version française

Pour obtenir la version française de cette publication, veuillez communiquer avec: Alcan Aluminium Limitée, Direction des relations publiques, 1188, rue Sherbrooke Ouest, Montréal (Québec), Canada, H3A 3G2.

Alcan Facts is printed on 60% recyeled paper.

[^0]: * The amual rated apacit has been restated, as at April 1,1992 , tw beflor reflect the aetual production lasts achized beer a prived of time.
 ** Reflects reduction in tats 1991.

[^1]: New opportuniies for existing and new businesses

 - Raw materials

 EReduction (smelting)

 - Fabrication

[^2]: * Alcan Group consolidated sales

[^3]:

[^4]: * Total aluminum industy dala, excluding China, the former Sovien Union and East Bloc countries.

